產(chǎn)品分類
Products產(chǎn)品中心/ PRODUCTS
簡要描述:脈搏血氧是以的方式測量實驗動物(幼鼠,小鼠,大鼠,豚鼠,兔等)的血氧飽和度,脈搏頻率,呼吸頻率,脈搏幅度,呼吸幅度,體溫等多種參數(shù)。
聯(lián)系電話:021-54377179
品牌 | 玉研儀器 | 產(chǎn)地類別 | 國產(chǎn) |
---|---|---|---|
應(yīng)用領(lǐng)域 | 制藥 |
中國區(qū)代理STARR公司的Mouse Ox Plus小動物脈搏血氧儀,適用于小鼠、大鼠、豚鼠、兔子等動物清醒或麻醉狀態(tài)下,脈搏、血氧、呼吸、體溫等多種生理參數(shù)的檢測采集??捎糜诳蒲袛?shù)據(jù)采集或手術(shù)監(jiān)護(hù),可拓展多通道。大鼠小鼠生理信號測量儀:以無創(chuàng)的方式測量小動物(幼鼠,小鼠,大鼠,豚鼠,兔, 等)的血氧飽和度、脈搏頻率、呼吸頻率、脈搏幅度、呼吸幅度和體溫。除體溫外,所有測量都是通過一個無創(chuàng)的感應(yīng)器。
所有測量都是通過一個無創(chuàng)的感應(yīng)器完成,準(zhǔn)確、方便、高效。
型號:MouseOx 正在對麻醉狀態(tài)下的小鼠進(jìn)行測試
有多種探頭可供選擇:
· 根據(jù)實驗需求:可選擇大鼠型探頭、小鼠型探頭;
· 根據(jù)動物狀態(tài):可選擇清醒活動狀態(tài)連續(xù)測量和麻醉(或手術(shù))狀態(tài)測量探頭;
· 根據(jù)動物數(shù)量:有多通道適配器可供選擇,同時檢測多只動物的生命體征;
· 根據(jù)使用環(huán)境:可選擇核磁環(huán)境適用的無磁探頭;
主要功能:
· 小動物手術(shù)術(shù)中監(jiān)測(保證適當(dāng)?shù)穆樽砩疃?,防止手術(shù)中缺氧)
· 一個無創(chuàng)傳感器獲得多個生命信號 (動脈血氧飽和度,心率,呼吸頻率,脈搏幅度,呼吸幅度)
· 心肺功能參數(shù)記錄
· 輸出模擬數(shù)據(jù)
經(jīng)過驗證的準(zhǔn)確度:
使用有創(chuàng)血氣采樣測量結(jié)果與無創(chuàng) MouseOx 測量結(jié)果的比較, 對比表明, 兩者具有很好的線性關(guān)系。
脈搏、血氧、呼吸等心肺監(jiān)測參數(shù):
· 脈波頻率在90到900BPM范圍內(nèi)監(jiān)測 (每分鐘心跳, Beat per minutes, BPM)
· 血氧飽和度監(jiān)測范圍:0% 到100% 動脈血氧飽和度;
· 血氧飽和度監(jiān)測誤差:<1.5% 橫跨整個監(jiān)測范圍;
· 血氧飽和度監(jiān)測反應(yīng)時間:實時報告動脈血氧飽和度, 在每次心跳以后0.72秒屏幕刷新;
· 呼吸頻率監(jiān)測范圍:每分鐘 25到450 次;
· 監(jiān)測反應(yīng)時間:呼吸率每1.7秒向用戶報告, 移動報告的值是10次呼吸的的平均數(shù);
· 無創(chuàng)傷監(jiān)測脈搏充盈度以估量血流量的變化;
· 脈搏監(jiān)測范圍:內(nèi)徑0到800微米的徽小血管;
· 監(jiān)測誤差:< 2.4%橫跨整個監(jiān)測范圍;
· 監(jiān)測反應(yīng)時間:脈搏充盈度實時向用戶報告, 在每次心跳以后,0.72秒屏幕刷新,刷新屏幕顯示被測量的所有脈搏充盈度;
· 無創(chuàng)傷監(jiān)測動物呼吸幅度的變化;
· 呼吸幅度監(jiān)測范圍:每分鐘25到450次;
· 呼吸幅度監(jiān)測反應(yīng)時間:呼吸率每1.7秒向用戶報告, 移動報告的值是10次呼吸的的平均數(shù);
多鐘測試探頭可選:
根據(jù)需要,可選擇老鼠清醒狀態(tài)下使用的頸部探頭,麻醉狀態(tài)下使用的足部探頭和大腿探頭
以下是使用有創(chuàng)血氣采樣測量結(jié)果與無創(chuàng)MouseOx測量結(jié)果的比較
可實現(xiàn)大鼠、小鼠清醒活動狀態(tài)下進(jìn)行測量
軟件界面
小動物脈搏血氧監(jiān)護(hù)儀的部分參考文獻(xiàn):
1. Albéri, L., Lintas, A., Kretz, R., Schwaller, B., & Villa, A. E. (2013). The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons. Journal of neurophysiology, 109(11), 2827-2841.
2. Sonati, T., Reimann, R. R., Falsig, J., Baral, P. K., O’Connor, T., Hornemann, S., Aguzzi, A. (2013). The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature, 501(7465), 102-106.
3. Ali, I., O’Brien, P., Kumar, G., Zheng, T., Jones, N. C., Pinault, D., O’Brien, T. J. (2013). Enduring Effects of Early Life Stress on Firing Patterns of Hippocampal and Thalamocortical Neurons in Rats: Implications for Limbic Epilepsy. PLOS ONE, 8(6), e66962.
4. Bell, L. A., Bell, K. A., & McQuiston, A. R. (2013). Synaptic Muscarinic Response Types in Hippocampal CA1 Interneurons Depend on Different Levels of Presynaptic Activity and Different Muscarinic Receptor Subtypes. Neuropharmacology.
5. Bolzoni, F., B?czyk, M., & Jankowska, E. (2013). Subcortical effects of transcranial direct current stimulation (tDCS) in the rat. The Journal of Physiology.
6. Bolzoni, F., B?czyk, M., & Jankowska, E. (2013). Subcortical effects of transcranial direct current stimulation (tDCS) in the rat. The Journal of Physiology.
7. Babaei, P., Tehrani, B. S., & Alizadeh, A. (2013). Effect of BDNF and adipose derived stem cells transplantation on cognitive deficit in Alzheimer model of rats. Journal of Behavioral and Brain Science, 3, 156-161.
8. Gilmartin, M. R., Miyawaki, H., Helmstetter, F. J., & Diba, K. (2013). Prefrontal Activity Links Nonoverlapping Events in Memory. The Journal of Neuroscience, 33(26), 10910-10914.
9. Feng, L., Sametsky, E. A., Gusev, A. G., & Uteshev, V. V. (2012). Responsiveness to nicotine of neurons of the caudal nucleus of the solitary tract correlates with the neuronal projection target. Journal of Neurophysiology, 108(7), 1884-1894.
10. Clarner, T., Diederichs, F., Berger, K., Denecke, B., Gan, L., Van der Valk, P., Kipp, M. (2012). Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia, 60(10), 1468-1480.
11. Girardet, C., Bonnet, M. S., Jdir, R., Sadoud, M., Thirion, S., Tardivel, C., Troadec, J. D. (2011). Central inflammation and sickness-like behavior induced by the food contaminant deoxynivalenol: A PGE2-independent mechanism.Toxicological Sciences, 124(1), 179-191.
12. Hru?ka-Plocháň, M., Juhas, S., Juhasova, J., Galik, J., Miyanohara, A., Marsala, M., Motlik, J. (2010). A27 Expression of the human mutant huntingtin in minipig striatum induced formation of EM48+ inclusions in the neuronal nuclei, cytoplasm and processes. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.
13. Brooks, S., Jones, L., & Dunnett, S. B. (2010). A29 Frontostriatal pathology in the (C57BL/6J) YAC128 mouse uncovered by the operant delayed alternation task. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A10.
14. Yu, L., Metzger, S., Clemens, L. E., Ehrismann, J., Ott, T., Gu, X., Nguyen, H. P. (2010). A28 Accumulation and aggregation of human mutant huntingtin and neuron atrophy in BAC-HD transgenic rat. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.
15. Baxa, M., Juhas, S., Pavlok, A., Vodicka, P., Juhasova, J., Hru?ka-Plocháň, M., Motlik, J. (2010). A26 Transgenic miniature pig as an animal model for Huntington’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A8-A9.
敬請關(guān)注玉研儀器微信號: